New Waveform Emulation Capability for JPEO-JTRS Evolves From SBIR Program

– Phase III Contract Supports US Army’s New Approach to Large-Scale Testing of Net-centric Systems –


dateCulver City, CA -- As a major stakeholder in keeping the United States at the leading edge of technology, the Department of Defense leans on the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs to stimulate innovation among entrepreneurial companies and research institutions.

Through a staged program that encourages and rewards the maturing of nascent concepts, the government provides funding nurturance and a degree of partnership to evolve new technologies that hold promise of bolstering military advantage, improving security, reducing costs, saving lives, or perhaps reducing environmental impacts.

The brass ring for both the DoD and contractors involved in the SBIR program is to advance successfully from a phase I feasibility study - through phase II concept/prototype - to a SBIR phase III, whereby the product or service is deemed mature enough to be commercially viable. This is the win-win outcome that the SBIR/STTR program was created to produce, but in practice, advancing new science and technology concepts to an “acquisition-ready” state is challenging. The total number of SBIR grants that progress to phase III each year is in the low single digits.

On April 1, 2011, the Joint Program Executive Office, Joint Tactical Radio System (JPEO JTRS) announced a phase III contract award to SCALABLE Network Technologies, Inc. (SCALABLE), Los Angeles, CA. The $11M contract is for a product called JNE (JTRS Network Emulator) to be used by numerous DoD programs/agencies. From a field of more than 80 SBIR grants in the JTRS program alone, SCALABLE is the first phase III contract recipient.

JNE is a virtual laboratory that supports real-time emulation of large-scale communication networks of current and future force radios and associated waveforms. Based on SCALABLE’s EXata® emulation engine, JNE is used to create “hybrid” networks that can emulate the intensity and distribution of traffic typical of battlefield deployments, and perform with all the complexity and realism of an actual large-scale network. This high degree of fidelity makes it possible to integrate a JNE network into live exercises using real hardware, real users and real applications connected to operational networks.

JNE’s importance as an urgent capability player in the Army’s upcoming series of brigade-level network integration operational test exercises at Fort Bliss, TX and White Sands Missile Range, NM, will be evident. These high profile tests are being closely watched because the Army is implementing a new approach to large-scale operational test events to accomplish the integration of six programs-of-record and various other technologies into one large tactical network that realistically mirrors the complexity of modern theatres. The new approach, spearheaded by Gen. Peter Chiarelli, Vice Chief of Staff of the Army, is unprecedented in scope. It brings many new systems and stakeholders physically together to test and compare the performance of the next generation networks under highly realistic battlefield conditions.

Conducting integration tests of this scale requires tremendous resources in manpower and dollars, and one of the ways the Army is mitigating these costs is by using the SBIR-developed JNE to represent (in software) critical radios that are not physically present. Because JNE emulates the JTRS (and other) waveforms with complete realism, it can “virtually size-up” the network to a scale that is representative of the intensity and distribution of network traffic typical of battlefield deployments without the need for large numbers of actual live radios and their human operators. Thus, it becomes possible for brigade (and larger) missions that involve air assets, urban operations, cyber intrusion and other complicating elements to be played out realistically without the need for actual levels of equipment or human assets.

“As the core of the Battle Command Network Integration and Simulation, the JTRS Network Emulator is the culmination of more than a decade of focused development, and the first time this capability will be used in operational testing,” said U.S. Army Operational Test Command commanding general, Brig. Gen. Don MacWillie.

The immediate value from JNE for the Army and Joint Forces is accelerated program development cycle time and cost-savings from more productive, realistic and early stage testing, which supports the driving objective to get the best equipment possible in the hands of the warfighters quickly. “BCNIS gives operational testers the ability to accurately replicate a large scale network at a fraction of the cost,” said Maj. John Morning, operations chief, Test Technology Directorate, USAOTC. “In a time of constrained budgets, this is one program that will definitely save the Army and taxpayers money, now and in the future.”

In the same manner that the JNE capability will support the Army’s upcoming test events, it can also be useful for other emerging military net-centric mission command applications such as Joint Capabilities Release (JCR) and Distributed Common Ground System (DCGS).

According to Michael DiGennaro, Battle Command Network Integration and Simulation manager, USAOTC, "JNE is really a perfect success story of how the DoD does R&D at its best, bringing critical new technologies to bear on pressing challenges. We started as a research project, furthered the design through technical testing, adapting to changes in network technology along the way, and are fielding an exciting solution that is supporting the deployment of robust net-centric communications for the warfighter.”

### 

 

PDF